Copied to
clipboard

G = C23.28D20order 320 = 26·5

7th non-split extension by C23 of D20 acting via D20/C20=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.28D20, C24.65D10, (C2×C20)⋊35D4, (C23×C4)⋊1D5, (C23×C20)⋊1C2, C10.115(C4×D4), C23.38(C4×D5), C10.70C22≀C2, C2.5(C207D4), C22.61(C2×D20), C10.80(C4⋊D4), (C22×C4).408D10, (C22×C10).193D4, C2.2(C242D5), C23.83(C5⋊D4), C55(C23.23D4), C222(D10⋊C4), C22.64(C4○D20), (C23×D5).24C22, C23.304(C22×D5), C10.10C4225C2, (C22×C10).364C23, (C23×C10).100C22, (C22×C20).485C22, C10.69(C22.D4), C2.5(C23.23D10), (C22×Dic5).67C22, (C2×C5⋊D4)⋊12C4, C2.29(C4×C5⋊D4), (C2×C4)⋊15(C5⋊D4), (C22×D5)⋊7(C2×C4), (C2×C23.D5)⋊7C2, C22.150(C2×C4×D5), (C2×C10)⋊8(C22⋊C4), (C2×Dic5)⋊11(C2×C4), (C2×C10).550(C2×D4), (C2×D10⋊C4)⋊11C2, (C22×C5⋊D4).7C2, C22.88(C2×C5⋊D4), (C2×C10).92(C4○D4), C2.36(C2×D10⋊C4), C10.106(C2×C22⋊C4), (C2×C10).244(C22×C4), (C22×C10).168(C2×C4), SmallGroup(320,840)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C23.28D20
C1C5C10C2×C10C22×C10C23×D5C22×C5⋊D4 — C23.28D20
C5C2×C10 — C23.28D20
C1C23C23×C4

Generators and relations for C23.28D20
 G = < a,b,c,d,e | a2=b2=c2=d20=1, e2=b, ab=ba, eae-1=ac=ca, ad=da, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=bd-1 >

Subgroups: 1022 in 286 conjugacy classes, 87 normal (25 characteristic)
C1, C2 [×3], C2 [×4], C2 [×6], C4 [×8], C22 [×3], C22 [×8], C22 [×22], C5, C2×C4 [×4], C2×C4 [×22], D4 [×8], C23, C23 [×6], C23 [×12], D5 [×2], C10 [×3], C10 [×4], C10 [×4], C22⋊C4 [×6], C22×C4 [×2], C22×C4 [×9], C2×D4 [×8], C24, C24, Dic5 [×4], C20 [×4], D10 [×10], C2×C10 [×3], C2×C10 [×8], C2×C10 [×12], C2.C42 [×2], C2×C22⋊C4 [×3], C23×C4, C22×D4, C2×Dic5 [×2], C2×Dic5 [×8], C5⋊D4 [×8], C2×C20 [×4], C2×C20 [×12], C22×D5 [×2], C22×D5 [×6], C22×C10, C22×C10 [×6], C22×C10 [×4], C23.23D4, D10⋊C4 [×4], C23.D5 [×2], C22×Dic5, C22×Dic5 [×2], C2×C5⋊D4 [×4], C2×C5⋊D4 [×4], C22×C20 [×2], C22×C20 [×6], C23×D5, C23×C10, C10.10C42 [×2], C2×D10⋊C4 [×2], C2×C23.D5, C22×C5⋊D4, C23×C20, C23.28D20
Quotients: C1, C2 [×7], C4 [×4], C22 [×7], C2×C4 [×6], D4 [×8], C23, D5, C22⋊C4 [×4], C22×C4, C2×D4 [×4], C4○D4 [×2], D10 [×3], C2×C22⋊C4, C4×D4 [×2], C22≀C2, C4⋊D4 [×2], C22.D4, C4×D5 [×2], D20 [×2], C5⋊D4 [×6], C22×D5, C23.23D4, D10⋊C4 [×4], C2×C4×D5, C2×D20, C4○D20 [×2], C2×C5⋊D4 [×3], C2×D10⋊C4, C4×C5⋊D4 [×2], C23.23D10, C207D4 [×2], C242D5, C23.28D20

Smallest permutation representation of C23.28D20
On 160 points
Generators in S160
(1 31)(2 32)(3 33)(4 34)(5 35)(6 36)(7 37)(8 38)(9 39)(10 40)(11 21)(12 22)(13 23)(14 24)(15 25)(16 26)(17 27)(18 28)(19 29)(20 30)(41 76)(42 77)(43 78)(44 79)(45 80)(46 61)(47 62)(48 63)(49 64)(50 65)(51 66)(52 67)(53 68)(54 69)(55 70)(56 71)(57 72)(58 73)(59 74)(60 75)(81 102)(82 103)(83 104)(84 105)(85 106)(86 107)(87 108)(88 109)(89 110)(90 111)(91 112)(92 113)(93 114)(94 115)(95 116)(96 117)(97 118)(98 119)(99 120)(100 101)(121 158)(122 159)(123 160)(124 141)(125 142)(126 143)(127 144)(128 145)(129 146)(130 147)(131 148)(132 149)(133 150)(134 151)(135 152)(136 153)(137 154)(138 155)(139 156)(140 157)
(1 139)(2 140)(3 121)(4 122)(5 123)(6 124)(7 125)(8 126)(9 127)(10 128)(11 129)(12 130)(13 131)(14 132)(15 133)(16 134)(17 135)(18 136)(19 137)(20 138)(21 146)(22 147)(23 148)(24 149)(25 150)(26 151)(27 152)(28 153)(29 154)(30 155)(31 156)(32 157)(33 158)(34 159)(35 160)(36 141)(37 142)(38 143)(39 144)(40 145)(41 101)(42 102)(43 103)(44 104)(45 105)(46 106)(47 107)(48 108)(49 109)(50 110)(51 111)(52 112)(53 113)(54 114)(55 115)(56 116)(57 117)(58 118)(59 119)(60 120)(61 85)(62 86)(63 87)(64 88)(65 89)(66 90)(67 91)(68 92)(69 93)(70 94)(71 95)(72 96)(73 97)(74 98)(75 99)(76 100)(77 81)(78 82)(79 83)(80 84)
(1 73)(2 74)(3 75)(4 76)(5 77)(6 78)(7 79)(8 80)(9 61)(10 62)(11 63)(12 64)(13 65)(14 66)(15 67)(16 68)(17 69)(18 70)(19 71)(20 72)(21 48)(22 49)(23 50)(24 51)(25 52)(26 53)(27 54)(28 55)(29 56)(30 57)(31 58)(32 59)(33 60)(34 41)(35 42)(36 43)(37 44)(38 45)(39 46)(40 47)(81 123)(82 124)(83 125)(84 126)(85 127)(86 128)(87 129)(88 130)(89 131)(90 132)(91 133)(92 134)(93 135)(94 136)(95 137)(96 138)(97 139)(98 140)(99 121)(100 122)(101 159)(102 160)(103 141)(104 142)(105 143)(106 144)(107 145)(108 146)(109 147)(110 148)(111 149)(112 150)(113 151)(114 152)(115 153)(116 154)(117 155)(118 156)(119 157)(120 158)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 138 139 20)(2 19 140 137)(3 136 121 18)(4 17 122 135)(5 134 123 16)(6 15 124 133)(7 132 125 14)(8 13 126 131)(9 130 127 12)(10 11 128 129)(21 107 146 47)(22 46 147 106)(23 105 148 45)(24 44 149 104)(25 103 150 43)(26 42 151 102)(27 101 152 41)(28 60 153 120)(29 119 154 59)(30 58 155 118)(31 117 156 57)(32 56 157 116)(33 115 158 55)(34 54 159 114)(35 113 160 53)(36 52 141 112)(37 111 142 51)(38 50 143 110)(39 109 144 49)(40 48 145 108)(61 88 85 64)(62 63 86 87)(65 84 89 80)(66 79 90 83)(67 82 91 78)(68 77 92 81)(69 100 93 76)(70 75 94 99)(71 98 95 74)(72 73 96 97)

G:=sub<Sym(160)| (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,21)(12,22)(13,23)(14,24)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30)(41,76)(42,77)(43,78)(44,79)(45,80)(46,61)(47,62)(48,63)(49,64)(50,65)(51,66)(52,67)(53,68)(54,69)(55,70)(56,71)(57,72)(58,73)(59,74)(60,75)(81,102)(82,103)(83,104)(84,105)(85,106)(86,107)(87,108)(88,109)(89,110)(90,111)(91,112)(92,113)(93,114)(94,115)(95,116)(96,117)(97,118)(98,119)(99,120)(100,101)(121,158)(122,159)(123,160)(124,141)(125,142)(126,143)(127,144)(128,145)(129,146)(130,147)(131,148)(132,149)(133,150)(134,151)(135,152)(136,153)(137,154)(138,155)(139,156)(140,157), (1,139)(2,140)(3,121)(4,122)(5,123)(6,124)(7,125)(8,126)(9,127)(10,128)(11,129)(12,130)(13,131)(14,132)(15,133)(16,134)(17,135)(18,136)(19,137)(20,138)(21,146)(22,147)(23,148)(24,149)(25,150)(26,151)(27,152)(28,153)(29,154)(30,155)(31,156)(32,157)(33,158)(34,159)(35,160)(36,141)(37,142)(38,143)(39,144)(40,145)(41,101)(42,102)(43,103)(44,104)(45,105)(46,106)(47,107)(48,108)(49,109)(50,110)(51,111)(52,112)(53,113)(54,114)(55,115)(56,116)(57,117)(58,118)(59,119)(60,120)(61,85)(62,86)(63,87)(64,88)(65,89)(66,90)(67,91)(68,92)(69,93)(70,94)(71,95)(72,96)(73,97)(74,98)(75,99)(76,100)(77,81)(78,82)(79,83)(80,84), (1,73)(2,74)(3,75)(4,76)(5,77)(6,78)(7,79)(8,80)(9,61)(10,62)(11,63)(12,64)(13,65)(14,66)(15,67)(16,68)(17,69)(18,70)(19,71)(20,72)(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54)(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,41)(35,42)(36,43)(37,44)(38,45)(39,46)(40,47)(81,123)(82,124)(83,125)(84,126)(85,127)(86,128)(87,129)(88,130)(89,131)(90,132)(91,133)(92,134)(93,135)(94,136)(95,137)(96,138)(97,139)(98,140)(99,121)(100,122)(101,159)(102,160)(103,141)(104,142)(105,143)(106,144)(107,145)(108,146)(109,147)(110,148)(111,149)(112,150)(113,151)(114,152)(115,153)(116,154)(117,155)(118,156)(119,157)(120,158), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,138,139,20)(2,19,140,137)(3,136,121,18)(4,17,122,135)(5,134,123,16)(6,15,124,133)(7,132,125,14)(8,13,126,131)(9,130,127,12)(10,11,128,129)(21,107,146,47)(22,46,147,106)(23,105,148,45)(24,44,149,104)(25,103,150,43)(26,42,151,102)(27,101,152,41)(28,60,153,120)(29,119,154,59)(30,58,155,118)(31,117,156,57)(32,56,157,116)(33,115,158,55)(34,54,159,114)(35,113,160,53)(36,52,141,112)(37,111,142,51)(38,50,143,110)(39,109,144,49)(40,48,145,108)(61,88,85,64)(62,63,86,87)(65,84,89,80)(66,79,90,83)(67,82,91,78)(68,77,92,81)(69,100,93,76)(70,75,94,99)(71,98,95,74)(72,73,96,97)>;

G:=Group( (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,21)(12,22)(13,23)(14,24)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30)(41,76)(42,77)(43,78)(44,79)(45,80)(46,61)(47,62)(48,63)(49,64)(50,65)(51,66)(52,67)(53,68)(54,69)(55,70)(56,71)(57,72)(58,73)(59,74)(60,75)(81,102)(82,103)(83,104)(84,105)(85,106)(86,107)(87,108)(88,109)(89,110)(90,111)(91,112)(92,113)(93,114)(94,115)(95,116)(96,117)(97,118)(98,119)(99,120)(100,101)(121,158)(122,159)(123,160)(124,141)(125,142)(126,143)(127,144)(128,145)(129,146)(130,147)(131,148)(132,149)(133,150)(134,151)(135,152)(136,153)(137,154)(138,155)(139,156)(140,157), (1,139)(2,140)(3,121)(4,122)(5,123)(6,124)(7,125)(8,126)(9,127)(10,128)(11,129)(12,130)(13,131)(14,132)(15,133)(16,134)(17,135)(18,136)(19,137)(20,138)(21,146)(22,147)(23,148)(24,149)(25,150)(26,151)(27,152)(28,153)(29,154)(30,155)(31,156)(32,157)(33,158)(34,159)(35,160)(36,141)(37,142)(38,143)(39,144)(40,145)(41,101)(42,102)(43,103)(44,104)(45,105)(46,106)(47,107)(48,108)(49,109)(50,110)(51,111)(52,112)(53,113)(54,114)(55,115)(56,116)(57,117)(58,118)(59,119)(60,120)(61,85)(62,86)(63,87)(64,88)(65,89)(66,90)(67,91)(68,92)(69,93)(70,94)(71,95)(72,96)(73,97)(74,98)(75,99)(76,100)(77,81)(78,82)(79,83)(80,84), (1,73)(2,74)(3,75)(4,76)(5,77)(6,78)(7,79)(8,80)(9,61)(10,62)(11,63)(12,64)(13,65)(14,66)(15,67)(16,68)(17,69)(18,70)(19,71)(20,72)(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54)(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,41)(35,42)(36,43)(37,44)(38,45)(39,46)(40,47)(81,123)(82,124)(83,125)(84,126)(85,127)(86,128)(87,129)(88,130)(89,131)(90,132)(91,133)(92,134)(93,135)(94,136)(95,137)(96,138)(97,139)(98,140)(99,121)(100,122)(101,159)(102,160)(103,141)(104,142)(105,143)(106,144)(107,145)(108,146)(109,147)(110,148)(111,149)(112,150)(113,151)(114,152)(115,153)(116,154)(117,155)(118,156)(119,157)(120,158), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,138,139,20)(2,19,140,137)(3,136,121,18)(4,17,122,135)(5,134,123,16)(6,15,124,133)(7,132,125,14)(8,13,126,131)(9,130,127,12)(10,11,128,129)(21,107,146,47)(22,46,147,106)(23,105,148,45)(24,44,149,104)(25,103,150,43)(26,42,151,102)(27,101,152,41)(28,60,153,120)(29,119,154,59)(30,58,155,118)(31,117,156,57)(32,56,157,116)(33,115,158,55)(34,54,159,114)(35,113,160,53)(36,52,141,112)(37,111,142,51)(38,50,143,110)(39,109,144,49)(40,48,145,108)(61,88,85,64)(62,63,86,87)(65,84,89,80)(66,79,90,83)(67,82,91,78)(68,77,92,81)(69,100,93,76)(70,75,94,99)(71,98,95,74)(72,73,96,97) );

G=PermutationGroup([(1,31),(2,32),(3,33),(4,34),(5,35),(6,36),(7,37),(8,38),(9,39),(10,40),(11,21),(12,22),(13,23),(14,24),(15,25),(16,26),(17,27),(18,28),(19,29),(20,30),(41,76),(42,77),(43,78),(44,79),(45,80),(46,61),(47,62),(48,63),(49,64),(50,65),(51,66),(52,67),(53,68),(54,69),(55,70),(56,71),(57,72),(58,73),(59,74),(60,75),(81,102),(82,103),(83,104),(84,105),(85,106),(86,107),(87,108),(88,109),(89,110),(90,111),(91,112),(92,113),(93,114),(94,115),(95,116),(96,117),(97,118),(98,119),(99,120),(100,101),(121,158),(122,159),(123,160),(124,141),(125,142),(126,143),(127,144),(128,145),(129,146),(130,147),(131,148),(132,149),(133,150),(134,151),(135,152),(136,153),(137,154),(138,155),(139,156),(140,157)], [(1,139),(2,140),(3,121),(4,122),(5,123),(6,124),(7,125),(8,126),(9,127),(10,128),(11,129),(12,130),(13,131),(14,132),(15,133),(16,134),(17,135),(18,136),(19,137),(20,138),(21,146),(22,147),(23,148),(24,149),(25,150),(26,151),(27,152),(28,153),(29,154),(30,155),(31,156),(32,157),(33,158),(34,159),(35,160),(36,141),(37,142),(38,143),(39,144),(40,145),(41,101),(42,102),(43,103),(44,104),(45,105),(46,106),(47,107),(48,108),(49,109),(50,110),(51,111),(52,112),(53,113),(54,114),(55,115),(56,116),(57,117),(58,118),(59,119),(60,120),(61,85),(62,86),(63,87),(64,88),(65,89),(66,90),(67,91),(68,92),(69,93),(70,94),(71,95),(72,96),(73,97),(74,98),(75,99),(76,100),(77,81),(78,82),(79,83),(80,84)], [(1,73),(2,74),(3,75),(4,76),(5,77),(6,78),(7,79),(8,80),(9,61),(10,62),(11,63),(12,64),(13,65),(14,66),(15,67),(16,68),(17,69),(18,70),(19,71),(20,72),(21,48),(22,49),(23,50),(24,51),(25,52),(26,53),(27,54),(28,55),(29,56),(30,57),(31,58),(32,59),(33,60),(34,41),(35,42),(36,43),(37,44),(38,45),(39,46),(40,47),(81,123),(82,124),(83,125),(84,126),(85,127),(86,128),(87,129),(88,130),(89,131),(90,132),(91,133),(92,134),(93,135),(94,136),(95,137),(96,138),(97,139),(98,140),(99,121),(100,122),(101,159),(102,160),(103,141),(104,142),(105,143),(106,144),(107,145),(108,146),(109,147),(110,148),(111,149),(112,150),(113,151),(114,152),(115,153),(116,154),(117,155),(118,156),(119,157),(120,158)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,138,139,20),(2,19,140,137),(3,136,121,18),(4,17,122,135),(5,134,123,16),(6,15,124,133),(7,132,125,14),(8,13,126,131),(9,130,127,12),(10,11,128,129),(21,107,146,47),(22,46,147,106),(23,105,148,45),(24,44,149,104),(25,103,150,43),(26,42,151,102),(27,101,152,41),(28,60,153,120),(29,119,154,59),(30,58,155,118),(31,117,156,57),(32,56,157,116),(33,115,158,55),(34,54,159,114),(35,113,160,53),(36,52,141,112),(37,111,142,51),(38,50,143,110),(39,109,144,49),(40,48,145,108),(61,88,85,64),(62,63,86,87),(65,84,89,80),(66,79,90,83),(67,82,91,78),(68,77,92,81),(69,100,93,76),(70,75,94,99),(71,98,95,74),(72,73,96,97)])

92 conjugacy classes

class 1 2A···2G2H2I2J2K2L2M4A···4H4I···4N5A5B10A···10AD20A···20AF
order12···22222224···44···45510···1020···20
size11···1222220202···220···20222···22···2

92 irreducible representations

dim111111122222222222
type++++++++++++
imageC1C2C2C2C2C2C4D4D4D5C4○D4D10D10C5⋊D4C4×D5D20C5⋊D4C4○D20
kernelC23.28D20C10.10C42C2×D10⋊C4C2×C23.D5C22×C5⋊D4C23×C20C2×C5⋊D4C2×C20C22×C10C23×C4C2×C10C22×C4C24C2×C4C23C23C23C22
# reps12211184424421688816

Matrix representation of C23.28D20 in GL6(𝔽41)

2360000
35180000
0023600
00351800
0000181
0000523
,
100000
010000
0040000
0004000
000010
000001
,
4000000
0400000
0040000
0004000
0000400
0000040
,
0400000
1350000
000900
00321300
00002511
00001439
,
0400000
4000000
000900
009000
0000211
00003739

G:=sub<GL(6,GF(41))| [23,35,0,0,0,0,6,18,0,0,0,0,0,0,23,35,0,0,0,0,6,18,0,0,0,0,0,0,18,5,0,0,0,0,1,23],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[0,1,0,0,0,0,40,35,0,0,0,0,0,0,0,32,0,0,0,0,9,13,0,0,0,0,0,0,25,14,0,0,0,0,11,39],[0,40,0,0,0,0,40,0,0,0,0,0,0,0,0,9,0,0,0,0,9,0,0,0,0,0,0,0,2,37,0,0,0,0,11,39] >;

C23.28D20 in GAP, Magma, Sage, TeX

C_2^3._{28}D_{20}
% in TeX

G:=Group("C2^3.28D20");
// GroupNames label

G:=SmallGroup(320,840);
// by ID

G=gap.SmallGroup(320,840);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,758,58,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^20=1,e^2=b,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*d^-1>;
// generators/relations

׿
×
𝔽